
AES is a widely used

symmetric encryption

algorithm standardized by

the National Institute of

Standards and Technology

(NIST). Algorithmic

optimization involves

refining the mathematical

operations and structures of

the AES algorithm to

enhance its speed and

resource efficiency.

Focusing more on

algorithmic aspects (cf.

hardware-specific

optimizations), we can

ensure consistent

performance across diverse

computing environments,

ranging from embedded

systems to high-

performance computing

clusters.

| PA K C R Y P T. O R G |

Speed Optimization of AES Function

WHITEPAPER Jan 25, 2024

The goals of AES optimization can vary, including speed (making it

faster), memory (reducing the footprint), or area (minimizing physical space).

Optimization can occur at different levels. At the algorithmic level, it involves

improving the steps in an algorithm to enhance its execution. At the

implementation level, it involves optimizing code by utilizing native instruction

sets and compute architecture. Top-5 optimization tricks are as follows: -

Sara Malik <smk@PakCrypt.Org> is an InfoSec professional in PakCrypt outreach program.

AES optimization is the art of finding harmony

between speed, inter-operability, memory

footprint, and security.

Bil-Slicing: Instead of having a single variable storing an n-bit number, we

have n variables (slices). Each variable stores one bit of the number. This

allows for parallel execution of operations across multiple blocks of data.

Further, a bit-sliced implementation, which is based solely on logical operations

and does not involve tables, is immune to timing attacks.

Look Up Tables (LUT): LUTs can significantly improve the speed of AES

execution by replacing complex computations with simple array indexing.

Operations like SubBytes (byte substitution) and MixColumns (mixing of

column data) can be precomputed and stored in lookup tables. When the

algorithm runs, instead of performing these computations, it simply retrieves

the precomputed results from the lookup tables.

Vectored Computation: In AES, SIMD can be used to

process multiple blocks of data at once, significantly

increasing throughput. E.g., MixColumns step can be

optimized for four blocks as described in the ARMv8

ASIMD implementation*. This involves processing four

128-bit AES states simultaneously.
*https://doi.org/10.1007/978-3-030-40921-0_5

Special Instructions: In modern x86 architectures, AES New Instructions

(AES-NI) is a set of instructions that enable fast and secure data encryption

and decryption. AES-NI consists of seven instructions and supports all usage

and modes of operations of AES. AESENC performs one round of an AES

encryption flow. AESENCLAST performs the last round of an AES encryption

flow. Other instructions in AES NI supports decryption and key expansion

functions. Similarly, in ARM processors, particularly those based on the

ARMv8-A architecture, support AES computation with dedicated instructions

Number Theory Tricks: For example, suppose we have n numbers a1, a2, ...,

an and we want to compute their inverses 1/a1, 1/a2, ..., 1/an modulo a prime

p. Instead of computing each inverse separately,, Montgomery’s trick allows us

to compute all inverses with just one inversion and 3n multiplications
<https://doi.org/10.1007/978-3-642-21969-6_10>

mailto:smk@PakCrypt.Org

